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Abstract

In this paper, we design a class of high order accurate nonlinear weighted compact schemes that are higher order
extensions of the nonlinear weighted compact schemes proposed by Deng and Zhang [X. Deng, H. Zhang, Developing
high-order weighted compact nonlinear schemes, J. Comput. Phys. 165 (2000) 22–44] and the weighted essentially non-
oscillatory schemes of Jiang and Shu [G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Com-
put. Phys. 126 (1996) 202–228] and Balsara and Shu [D.S. Balsara, C.-W. Shu, Monotonicity preserving weighted essen-
tially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys. 160 (2000) 405–452]. These
nonlinear weighted compact schemes are proposed based on the cell-centered compact scheme of Lele [S.K. Lele, Compact
finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16–42]. Instead of performing the non-
linear interpolation on the conservative variables as in Deng and Zhang (2000), we propose to directly interpolate the flux
on its stencil. Using the Lax–Friedrichs flux splitting and characteristic-wise projection, the resulted interpolation formulae
are similar to those of the regular WENO schemes. Hence, the detailed analysis and even many pieces of the code can be
directly copied from those of the regular WENO schemes. Through systematic test and comparison with the regular
WENO schemes, we observe that the nonlinear weighted compact schemes have the same ability to capture strong discon-
tinuities, while the resolution of short waves is improved and numerical dissipation is reduced.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

There are two typical approaches to design high order finite difference schemes for solving partial differen-
tial equations. The first is the traditional concept that the derivative of a function on the numerical grid is
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approximated by a linear combination of the function on a subset of the grid (stencil). The linear combination
coefficients should satisfy certain order conditions in order to achieve a high order accurate approximation to
the derivative. This is the standard finite difference method that is called a non-compact finite difference
scheme by Adams and Shariff [1]. The second approach to design finite difference schemes, corresponding
to the so-called compact schemes, is to form a linear combination of the unknown approximations to the
derivative at the grid points in a stencil, and equate it with another linear combination of the function itself
at the grid points in the same stencil. The word ‘‘compact” corresponds to the fact that for the same order of
accuracy, the stencil can be more compact in the second approach. However, a linear system must be solved to
obtain approximations to the derivative at the grid points for compact schemes, thus the effective stencil for
the approximation of the derivative at a grid point, in terms of the function values in the mesh, is not compact
at all. The most influential reference for compact schemes is [26].

The weighted essentially non-oscillatory (WENO) finite difference scheme [19] is a typical high order non-
compact finite difference scheme suitable for solving convection dominated partial differential equations
containing possible discontinuities in the solutions, such as the Euler or Navier–Stokes equations in compu-
tational fluid dynamics. It is an extension of the essentially non-oscillatory (ENO) scheme which was intro-
duced by Harten et al. [15]. The accuracy can be improved to the optimal order in smooth regions while
the essentially non-oscillatory property near discontinuities is maintained. The WENO idea was first intro-
duced by Liu et al. [27], in which the authors used a cell average approach (finite volume framework) to con-
vert an rth order ENO scheme to an ðr þ 1Þth order WENO scheme. Based on the pointwise finite difference
ENO scheme [38,39] and by a careful design of the smoothness indicator and nonlinear weights, the WENO
scheme in [19] can achieve the optimal ð2r � 1Þth order accuracy when converting an rth order ENO scheme,
while still keeping the essentially non-oscillatory property near shock waves. The WENO schemes have the
two desirable properties that they capture discontinuities and maintain high order accuracy. It has been
applied to many problems containing discontinuous solutions. We refer to the recent review paper [37] for
more details.

Even though the order of accuracy for explicit finite difference WENO schemes can be designed to be arbi-
trarily high, such as the eleventh order WENO scheme developed by Balsara and Shu [2], the resolution of
short waves of such high order explicit finite difference schemes is not ideal. The order of accuracy refers
to the asymptotic behavior of the scheme for solving smooth solutions when the mesh size becomes small.
In applications, for example in wave dominated problems such as aeroacoustics and turbulence, we often need
to approximate solutions on a relatively coarse mesh with respect to the wave frequencies that we would like to
resolve. The scheme’s ability to resolve short wavelengths relative to a given mesh can be represented by a dis-
persion relation. The best method to simulate wave dominated problems is the spectral method [4,11,22],
which is high order accurate and has the best dispersion relation. However, the spectral method has its
own limitation as it imposes significant restrictions on the geometry and boundary conditions. Typical explicit
high order finite difference schemes, corresponding to the choice of linear combination coefficients to maximize
the order of accuracy for a given stencil, do not have optimal dispersion relations. To overcome this drawback,
there are efforts in the literature to modify the linear combination coefficients in a finite difference scheme to
improve its dispersion relation, at the price of lowering the achievable order of accuracy corresponding to a
given stencil. Tam and Webb [42] used this strategy to develop a dispersion relation preserving (DRP) finite
difference scheme. Ponziani et al. [33] and Wang and Chen [43] also used this strategy to develop optimal
WENO schemes for dispersion relationships.

A good choice to simulate wave dominated problems is the compact scheme, which typically has better dis-
persion relation than a finite difference scheme of the same order of accuracy. Early discussion of compact
schemes can be found in [17,23]. In [26], Lele developed a family of compact schemes for the first and second
derivatives. Through systematic Fourier analysis, it is shown that these compact schemes have spectral-like
resolution for short waves. In practice, compact approximations on a cell-centered mesh has superiority
due to their smaller numerical viscosity. Nagarajan et. al [31] and Boersma [3] used staggered mesh compact
schemes to simulate compressible flows. Numerical tests indicate that their methods are quite robust. Through
coupling the second derivatives, Mahesh [28] developed a family of compact schemes with good spectral-like
resolution. Shukla and Zhong [40] developed a compact scheme for non-uniform meshes. Upwind compact
schemes were also developed [6,10,48] for solving nonlinear hyperbolic problems. The compact schemes have
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been extensively applied to direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulence
[7,25,29,30].

Compact schemes also have their drawbacks. They usually have low or even non-existent numerical dissi-
pation. This is an advantage for the resolution of waves, but it also causes problems for nonlinear hyperbolic
problems with shock waves or sharp gradients in the solution. Supersonic turbulence boundary or mixing lay-
ers are practical examples. For this kind of problems, a natural choice is to use a hybrid scheme. In the smooth
region, a compact scheme is used; while in the region near the discontinuities, a scheme that can capture shock
waves without oscillations is used. There have been many efforts to test this idea. Adams and Sheriff [1] applied
a hybrid compact-ENO scheme to shock turbulence interaction. Pirozzoli [32] tested a hybrid compact-
WENO scheme to the same problem. Mahesh et al. [29] used a sixth order ENO scheme to compute the spatial
derivatives around the shock wave in the streamwise direction (normal-shock) and a compact scheme to com-
pute all other spatial derivatives. Although hybrid schemes can overcome some drawbacks of both numerical
schemes, new problems could arise. For example, the use of a hybrid compact-ENO or compact-WENO
scheme needs indicators to distinguish discontinuities. To find a suitable indicator for discontinuities in a com-
plex flow is a difficult problem. Switching frequently between two different schemes may cause a loss in the
accuracy and resolution. Moreover, because the two different schemes have quite different structures, the
hybrid scheme is often not efficient in parallel computing.

Based on the cell-centered compact scheme of Lele [26], Deng and Maekawa [8] and Deng and Zhang [9]
developed a class of nonlinear compact schemes based on the idea of ENO and WENO respectively. In this
scheme, the flux at the cell center is computed through a nonlinear combination of several lower order formu-
lae on the substencil similar to the numerical flux of the WENO scheme. Their numerical results indicate that,
comparing with the regular ENO and WENO schemes, their nonlinear compact scheme has better wave res-
olution and similar ability to capture strong shock waves. Based on the Padé type compact scheme of Lele [26],
Jiang et al. [21] developed a weighted compact scheme. This weighted compact scheme is a combination of
several compact schemes constructed on different substencils.

In this paper, we further explore the nonlinear weighted compact scheme of Deng and Zhang [9], with
the objective of improving its accuracy, performance and efficiency. First, instead of using the nonlinear
interpolation of the conservative variables as in [9], we propose to directly interpolate the flux on its stencil.
Using the Lax–Friedrichs flux splitting and characteristic-wise projection, the resulted interpolation formu-
lae are similar to those of the regular WENO schemes [19]. Hence, the detailed analysis and even many
pieces of the code can be directly copied from those of the regular WENO schemes. Second, we extend
the weighted compact scheme to higher order accuracy, up to eighth order. Systematic numerical test
and comparison are performed.

This paper is organized as follows. In Section 2, we derive the formulae for the nonlinear weighted compact
schemes. Section 3 contains a Fourier analysis to systemically analyze the wave resolution of central compact
and weighted compact schemes. Accuracy tests are performed in Section 4. Numerical tests for problems
including strong shock waves are shown in Section 5. The convergence to steady state solutions is studied
for the fourth order weighted compact scheme in Section 6. Section 7 contains concluding remarks.

2. Scheme formulation

We consider numerical approximations to the solution of the conservation law
ou
ot
þ of ðuÞ

ox
¼ 0: ð2:1Þ
A semidiscrete finite difference scheme can be represented as
ou
ot

� �
i

¼ �f 0i ; ð2:2Þ
where f 0i is the approximation to the spatial derivative at the grid node xi. In this section, we apply the WENO
idea [19] to the linear cell-centered compact scheme proposed by Lele [26] and develop a class of weighted
compact schemes similar to those in [9] that can capture discontinuities.
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2.1. Cell-centered compact scheme

Lele [26] proposed a linear cell-centered compact scheme which has the following form:
Table
The co

Order

Fourth

Sixth

Eighth

Tenth
bf 0i�2 þ af 0i�1 þ f 0i þ af 0iþ1 þ bf 0iþ2 ¼ c
fiþ5

2
� fi�5

2

5Dx
þ b

fiþ3
2
� fi�3

2

3Dx
þ a

fiþ1
2
� fi�1

2

Dx
: ð2:3Þ
Notice that the left hand side of the compact scheme (2.3) is a linear combination of the unknown approxi-
mations to the derivative f 0j at some nodes xj near xi, while the right hand side is a linear combination of the
function itself at half nodes (cell centers) xjþ1

2
. The constraints on the coefficients a, b, a, b and c correspond to

different orders of accuracy that can be derived by matching the Taylor series coefficients and these have been
listed in Lele [26]. We list them again in Table 2.1 for later use.

If b ¼ 0, c ¼ 0, a fourth order tridiagonal compact scheme is obtained with a ¼ 3
8
ð3� 2aÞ and

b ¼ 1
8
ð22a� 1Þ. The corresponding scheme is:
af 0i�1 þ f 0i þ af 0iþ1 ¼ b
fiþ3

2
� fi�3

2

3Dx
þ a

fiþ1
2
� fi�1

2

Dx
: ð2:4Þ
Especially, if a ¼ 1
22

, the coefficient b vanishes. It results in the most compact scheme as follows:
af 0i�1 þ f 0i þ af 0iþ1 ¼ a
fiþ1

2
� fi�1

2

Dx
: ð2:5Þ
If a ¼ 9
62

, we obtain a sixth order tridiagonal scheme with the same formula as (2.4).
The cell-centered compact scheme (2.3) is originally designed for a staggered grid. It is called a staggered

scheme by Nagarajan et al. [31]. A Fourier analysis indicates that the wave resolution of these cell-centered
compact schemes is much better than other compact schemes of the same order of accuracy. For a non-stag-
gered grid, the cell-centered value fiþ1

2
can be obtained by an interpolation from the function values on the grid

nodes.

2.2. Compact interpolation

Lele [26] gave a compact formula to interpolate the value on a grid node from a staggered grid. In fact, as
can be seen from Fig. 2.1, the cell-centers and nodes correspond to a shift of half a mesh size. The compact
interpolation provides a compact method to transfer the values between the nodes and cell-centers. Hence, we
can use it to approximate the values on cell-centers:
bf̂ i�3
2
þ af̂ i�1

2
þ f̂ iþ1

2
þ af̂ iþ3

2
þ bf̂ iþ5

2
¼ c

2
ðfiþ3 þ fi�2Þ þ

b
2
ðfiþ2 þ fi�1Þ þ

a
2
ðfiþ1 þ fiÞ: ð2:6Þ
2.1
efficients and truncation error of the linear cell-centered compact schemes [26]

Coefficients Truncation error

a ¼ 1
8 ð9� 6a� 78bþ 16cÞ

b ¼ 1
8 ð�1þ 22aþ 94b� 24cÞ 1

1920 ð9� 62aþ 1618b� 384cÞDx4f ð5Þ

a ¼ 1
192 ð225� 206a� 254bÞ

b ¼ 1
128 ð�25þ 414a� 114bÞ

c ¼ 1
384 ð9� 62aþ 1618bÞ 1

107520 ð75� 354aþ 2614bÞDx6f ð7Þ

b ¼ 1
2614 ð354a� 75Þ

a ¼ 1
31368 ð37950� 39275aÞ

b ¼ 1
20912 ð�3550þ 65115aÞ

c ¼ 1
62736 ð�6114þ 25669aÞ 1

1686343680 ð96850� 288529aÞDx8f ð9Þ

b ¼ 9675
577058, a ¼ 96850

288529

a ¼ 683425
865587, b ¼ 505175

577058

c ¼ 69049
1731174

939109
818997645312 Dx10f ð11Þ



Fig. 2.1. Shift by half a mesh size between the nodes and cell-center points.
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Table 2.2 lists the coefficient constraints [26] corresponding to different orders of accuracy for the compact
interpolation (2.6).

2.3. Weighted interpolation

2.3.1. Basic idea of the weighted interpolation

The value on a cell center can also be interpolated locally from the node values on a stencil. In general, we
can get a ð2r � 1Þth order approximation based on the flux function in a stencil S2r�1 ¼ ðxi�rþ1; . . . ; xiþr�1Þ.
Using this stencil, the flux at any point can be evaluated as a interpolating polynomial:
Table
Coeffic

Order

Fourth

Sixth

Eighth

Tenth
f̂ 2r�1ðxÞ ¼ fi þ
X2ðr�1Þ

l¼1

alðx� xiÞl: ð2:7Þ
Evaluating the function at the cell-center xiþ1
2
, the ð2r � 1Þth order approximation is given by:
f̂ L
iþ1

2
¼ f̂ 2r�1ðxiþ1

2
Þ ¼ q2r�1ðfi�rþ1; . . . ; fiþr�1Þ; ð2:8Þ
where the superscript L refers to the fact that the stencil S2r�1 is biased to the left relative to the interpolation
point xiþ1

2
, and q2r�1 depends linearly on the flux values fj in the stencil S2r�1.

Similar to the reconstruction in [19], the stencil S2r�1 can be divided into r sub-stencils
S2r�1
k ¼ ðxiþk�rþ1; xiþk�rþ2; . . . ; xiþkÞ; k ¼ 0; 1; . . . ; r � 1:
In each of these substencils, the rth order approximation can be obtained
f̂ ðkÞ
iþ1

2

¼ qr
kðfiþk�rþ1; . . . ; fiþkÞ; ð2:9Þ
where
qr
kðg0; . . . ; gr�1Þ ¼

Xr�1

l¼0

ar
k;lgl
2.2
ients of the transfer function [26]

Coefficients Truncation error

a ¼ 1
8 ð9þ 10a� 14bþ 16cÞ

b ¼ 1
8 ð�1þ 6aþ 30b� 24cÞ 1

128 ð3� 10aþ 70b� 128cÞDx4f ð4Þ

a ¼ 1
64 ð75þ 70a� 42bÞ

b ¼ 1
128 ð�25þ 126aþ 270bÞ

c ¼ 1
128 ð3� 10aþ 70bÞ 1

1024 ð5� 14aþ 42bÞDx6f ð6Þ

b ¼ 1
42 ð14a� 5Þ

a ¼ 1
8 ð10þ 7aÞ

b ¼ 1
112 ð�50þ 189aÞ

c ¼ 1
48 ð�2þ 5aÞ 1

28672 ð10� 21aÞDx8f ð8Þ

b ¼ 5
126, a ¼ 10

21

a ¼ 5
3, b ¼ 5

14

c ¼ 1
126

1
258048 Dx10f ð10Þ
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with ar
k;l, for 0 6 k; l 6 r � 1, being constant coefficients.

The value f̂ L
iþ1

2
can be obtained by a linear combination of f̂ ðkÞ

iþ1
2

q2r�1ðfi�rþ1; . . . ; fiþr�1Þ ¼
Xr�1

k¼0

Cr
kqr

kðfiþk�rþ1; . . . ; fiþkÞ ð2:10Þ
with suitable constants Cr
k, also called the linear weights.

The approximation (2.10) is linear. A scheme based on this approximation can not capture shock waves
and other discontinuities without spurious oscillations. Adopting the WENO idea, we use nonlinear weights
xr

k to replace the linear weights Cr
k and obtain a nonlinear approximation
f̂ iþ1
2
¼
Xr�1

k¼0

xr
kqr

kðfiþk�rþ1; . . . ; fiþkÞ; ð2:11Þ
where the nonlinear weight xr
k for the stencil S2r�1

k is given by:
xr
k ¼

ar
k

ar
0 þ ar

1 þ � � � þ ar
r�1

ð2:12Þ
with
ar
k ¼

Cr
k

ðeþ ISr
kÞ

2
; k ¼ 0; 1; . . . ; r � 1: ð2:13Þ
Here e is a small positive number which is introduced to avoid the denominator becoming zero. In our later
tests, we take e ¼ 10�6 (except for some accuracy tests in Section 4). ISk is the smoothness indicator of the flux
function in the kth substencil which adopts the formulae given by Jiang and Shu [19] as:
ISr
k ¼

Xr�1

l¼1

Z x
iþ1

2

x
i�1

2

Dx2l�1 olf ðrÞðxÞ
olx

� �2

dx: ð2:14Þ
2.3.2. High order nonlinear weighted approximation

In this subsection we document the explicit formulae for the high order nonlinear weighted approximations.

(a) For r ¼ 3.In the case of r ¼ 3, the linear fifth order approximation is given by
f̂ L
iþ1

2
¼ 1

128
ð3f i�2 � 20f i�1 þ 90f i þ 60f iþ1 � 5f iþ2Þ: ð2:15Þ
The three third order approximations in the three substencils are
f̂ 0
iþ1

2
¼ 1

8
ð3f i�2 � 10f i�1 þ 15f iÞ; ð2:16Þ

f̂ 1
iþ1

2
¼ 1

8
ð�fi�1 þ 6f i þ 3f iþ1Þ; ð2:17Þ

f̂ 2
iþ1

2
¼ 1

8
ð3f i þ 6f iþ1 � fiþ2Þ: ð2:18Þ
The linear weights are given by
c3
0 ¼

1

16
; c3

1 ¼
10

16
; c3

2 ¼
5

16
: ð2:19Þ
The smoothness indicators are
IS3
0 ¼

1

4
ðfi�2 � 4f i�1 þ 3f iÞ

2 þ 13

12
ðfi�2 � 2f i�1 þ fiÞ2; ð2:20Þ

IS3
1 ¼

1

4
ðfi�1 � fiþ1Þ2 þ

13

12
ðfi�1 � 2f i þ fiþ1Þ2; ð2:21Þ

IS3
2 ¼

1

4
ð3f i � 4f iþ1 þ fiþ2Þ2 þ

13

12
ðfi � 2f iþ1 þ fiþ2Þ2: ð2:22Þ
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The fifth order approximation in (2.15) to the cell-centered value can be written as a convex combination of
the three third order approximations in (2.16)–(2.18)
f̂ L
iþ1

2
¼ x3

0f̂ 0
iþ1

2
þ x3

1f̂ 1
iþ1

2
þ x3

2f̂ 2
iþ1

2
; ð2:23Þ
if we take the combination coefficients x3
j as in (2.12).Plugging the expressions of f̂ 0

iþ1
2
, f̂ 1

iþ1
2

and f̂ 2
iþ1

2
from

(2.16)–(2.18) into (2.23), we obtain
f̂ iþ1
2
¼ 1

16
ð�fi�1 þ 9f i þ 9f iþ1 � fiþ2Þ þ

3

8
x3

0ðfi�2 � 3f i�1 þ 3f i � fiþ1Þ

þ 1

8
x3

2 �
1

2

� �
ðfi�1 � 3f i þ 3f iþ1 � fiþ2Þ; ð2:24Þ
which can be rewritten as
f̂ iþ1
2
¼ 1

16
ð�fi�1 þ 9f i þ 9f iþ1 � fiþ2Þ � uN ðDfi�3

2
;Dfi�1

2
;Dfiþ1

2
;Dfiþ3

2
Þ; ð2:25Þ
where Dfjþ1
2
¼ fjþ1 � fj and
uNða; b; c; dÞ ¼
3

8
x3

0ða� 2bþ cÞ þ 1

8
x3

2 �
1

2

� �
ðb� 2cþ dÞ:
Here, we have used the fact x3
0 þ x3

1 þ x3
2 ¼ 1. The formula (2.20)–(2.22) and (2.25) are similar to those for the

WENO reconstruction (see (2.3) in [20]). Hence, all the analysis for the accuracy, the ability to capture strong
shock waves and the convergence to steady state of the WENO schemes [16,19,44] can be copied to the
weighted compact schemes discussed in this paper. For the implementation of the weighted interpolation, part
of the regular WENO reconstruction code can be copied to the weighted compact schemes as well. Similar
WENO interpolations have been used in [35].

(b) For r ¼ 4.In the case of r ¼ 4, the linear seventh order approximation is given by
f̂ L
iþ1

2
¼ 1

1024
ð�5f i�3 þ 42f i�2 � 175f i�1 þ 700f i þ 525f iþ1 � 70f iþ2 þ 7f iþ3Þ: ð2:26Þ
The four fourth order approximations from the four substencils are
f̂ 0
iþ1

2
¼ 1

48
ð�15f i�3 þ 63f i�2 � 105f i�1 þ 105f iÞ; ð2:27Þ

f̂ 1
iþ1

2
¼ 1

48
ð3f i�2 � 15f i�1 þ 45f i þ 15f iþ1Þ; ð2:28Þ

f̂ 2
iþ1

2
¼ 1

48
ð�3f i�1 þ 27f i þ 27f iþ1 � 3f iþ2Þ; ð2:29Þ

f̂ 3
iþ1

2
¼ 1

48
ð15f i þ 45f iþ1 � 15f iþ2 þ 3f iþ3Þ: ð2:30Þ
The linear weights are given by
c4
0 ¼

1

64
; c4

1 ¼
21

64
; c4

2 ¼
35

64
; c4

3 ¼
7

64
: ð2:31Þ
The smoothness indicators are
IS4
0 ¼ fi�3ð79788f i�3 � 566568f i�2 þ 680328f i�1 � 273336f iÞ
þ fi�2ð1027692f i�2 � 2523384f i�1 þ 1034568f iÞ
þ fi�1ð1610892f i�1 � 1378728f iÞ þ 308748f 2

i ; ð2:32Þ
IS4

1 ¼ fi�2ð38028f i�2 � 232488f i�1 þ 228168f i � 71736f iþ1Þ
þ fi�1ð401292f i�1 � 847224f i þ 277128f iþ1Þ
þ fið492012f i � 364968f iþ1Þ þ 79788f 2

iþ1; ð2:33Þ
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IS4
2 ¼ fi�1ð79788f i�1 � 364968f i þ 277128f iþ1 � 71736f iþ2Þ
þ fið492012f i � 847224f iþ1 þ 228168f iþ2Þ
þ fiþ1ð401292f iþ1 � 232488f iþ2Þ þ 38028f 2

iþ2; ð2:34Þ
IS4

3 ¼ fið308748f i � 1378728f iþ1 þ 1034568f iþ2 � 273336f iþ3Þ
þ fiþ1ð1610892f iþ1 � 2523384f iþ2 þ 680328f iþ3Þ
þ fiþ2ð1027692f iþ2 � 566568f iþ3Þ þ 79788f 2

iþ3: ð2:35Þ

(c) For r ¼ 5.In the case of r ¼ 5, the linear ninth order approximation is given by

f̂ L
iþ1

2
¼ 1

32768
ð35f i�4�360f i�3þ1764f i�2�5880f i�1þ22050f iþ17640f iþ1�2940f iþ2þ504f iþ3�45f iþ4Þ:

ð2:36Þ
The five fifth order approximations from the five substencils are
f̂ 0
iþ1

2
¼ 1

384
ð105f i�4 � 540f i�3 þ 1134f i�2 � 1260f i�1 þ 945f iÞ; ð2:37Þ

f̂ 1
iþ1

2
¼ 1

384
ð�15f i�3 þ 84f i�2 � 210f i�1 þ 420f i þ 105f iþ1Þ; ð2:38Þ

f̂ 2
iþ1

2
¼ 1

384
ð9f i�2 � 60f i�1 þ 270f i þ 180f iþ1 � 15f iþ2Þ; ð2:39Þ

f̂ 3
iþ1

2
¼ 1

384
ð�15f i�1 þ 180f i þ 270f iþ1 � 60f iþ2 þ 9f iþ3Þ; ð2:40Þ

f̂ 4
iþ1

2
¼ 1

384
ð105f i þ 420f iþ1 � 210f iþ2 þ 84f iþ3 � 15f iþ4Þ: ð2:41Þ
The linear weights are given by
c5
0 ¼

1

256
; c5

1 ¼
9

64
; c5

2 ¼
63

128
; c5

3 ¼
21

64
; c5

2 ¼
9

256
: ð2:42Þ
The smoothness indicators are
IS0 ¼ fi�4ð1114835f i�4 � 10262008f i�3 þ 17985252f i�2 � 14254360f i�1 þ 4301446f iÞ
þ fi�3ð23768432f i�3 � 83962416f i�2 þ 67148512f i�1 � 20460952f iÞ
þ fi�2ð74964492f i�2 � 121605168f i�1 þ 37653348f iÞ
þ fi�1ð50449520f i�1 � 32188024f iÞ þ 5347091f 2

i ; ð2:43Þ
IS1 ¼ fi�3ð329267f i�3 � 2899576f i�2 þ 4740132f i�1 � 3385432f i þ 886342f iþ1Þ

þ fi�2ð6595472f i�2 � 22176048f i�1 þ 16196128f i � 4311448f iþ1Þ
þ fi�1ð19389420f i�1 � 29385264f i þ 8042340f iþ1Þ
þ fið11710736f i � 6846904f iþ1Þ þ 1114835f 2

iþ1; ð2:44Þ
IS2 ¼ fi�2ð329267f i�2 � 2406328f i�1 þ 3199908f i � 1845208f iþ1 þ 393094f iþ2Þ

þ fi�1ð4914800f i�1 � 13983024f i þ 8404960f iþ1 � 1845208f iþ2Þ
þ fið10783116f i � 13983024f iþ1 þ 3199908f iþ2Þ
þ fiþ1ð4914800f iþ1 � 2406328f iþ2Þ þ 329267f 2

iþ2; ð2:45Þ
IS3 ¼ fi�1ð1114835f i�1 � 6846904f i þ 8042340f iþ1 � 4311448f iþ2 þ 886342f iþ3Þ

þ fið11710736f i � 29385264f iþ1 þ 16196128f iþ2 � 3385432f iþ3Þ
þ fiþ1ð19389420f iþ1 � 22176048f iþ2 þ 4740132f iþ3Þ
þ fiþ2ð6595472f iþ2 � 2899576f iþ3Þ þ 329267f 2

iþ3; ð2:46Þ
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IS4 ¼ fið5347091f i � 32188024f iþ1 þ 37653348f iþ2 � 20460952f iþ3 þ 4301446f iþ4Þ
þ fiþ1ð50449520f iþ1 � 121605168f iþ2 þ 67148512f iþ3 � 14254360f iþ4Þ
þ fiþ2ð74964492f iþ2 � 83962416f iþ3 þ 17985252f iþ4Þ
þ fiþ3ð23768432f iþ3 � 10262008f iþ4Þ þ 1114835f 2

iþ4: ð2:47Þ
The fourth order centered compact scheme combined with the fifth order weighted interpolation results in a
fourth order weighted compact scheme, to be denoted by WCOMP4 later. The sixth order centered compact
scheme combined with the fifth order and the seventh order weighted interpolations results in a fifth order and
a sixth order weighted compact scheme respectively, denoted by WCOMP5 and WCOMP6. The eighth order
centered compact scheme combined with the seventh order and the ninth order weighted interpolations results
in a seven order and an eighth order weighted compact scheme respectively, denoted by WCOMP7 and
WCOMP8. Finally, the tenth order centered compact scheme combined with the ninth order weighted inter-
polation results in a ninth order weighted compact scheme, denoted by WCOMP9.
2.4. Boundary conditions

For non-periodic boundary conditions, the numerical scheme described in the previous sections can be used
to compute the flow variables in inner points. Besides this, the numerical scheme near the boundary is also
required. In this paper, we use the numerical boundary scheme proposed by Carpenter et al. [5] and Zhong
[48] to compute the physical variables at free flow boundary. For fourth order accuracy, this boundary scheme
is given by
f 00 þ 3f 01 ¼
1

6Dx
ð�17f 0 þ 9f 1 þ 9f 2 � f3Þ; ð2:48Þ

f 00 þ 4f 01 þ f 02 ¼
1

Dx
ð�3f 0 þ 3f 2Þ; ð2:49Þ

f 0N þ 3f 0N�1 ¼
1

6Dx
ðfN�3 � 9f N�2 � 9f N�1 þ 17f N Þ; ð2:50Þ

f 0N þ 4f 0N�1 þ f 0N�2 ¼
1

Dx
ð3f N � 3f N�2Þ: ð2:51Þ
For solid wall boundary, through introducing ghost points, the spatial derivatives are symmetric to the wall
except that of the velocity component in the direction perpendicular to the wall which is anti-symmetric.

2.5. Flux splitting

The purpose of flux splitting is to introduce correct upwinding. In general, the flux can be split into two
parts:
f ðuÞ ¼ f þðuÞ þ f �ðuÞ; ð2:52Þ

where dfþðuÞ

du P 0 and df�ðuÞ
du 6 0. In this paper, we use the Lax–Friedrichs flux splitting
f �ðuÞ ¼ 1

2
ðf ðuÞ � auÞ; ð2:53Þ
where a ¼ maxujf 0ðuÞj with the maximum taken over some relevant range of u. For systems this a is chosen
differently for each characteristic field as the maximum of the corresponding eigenvalue of the Jacobian in that
field. We refer to [19] for the details of this process in the context of the WENO reconstruction which is similar
to our WENO interpolation.

During the weighted interpolation for the cell-centered value, we use the upwind biased stencils to get the
approximation fiþ1

2
. That is, the value f þ

iþ1
2

is interpolated from the point values in the stencil

Sþ ¼ ðxi�rþ1; . . . ; xiþr�1Þ and the value f �
iþ1

2
from S� ¼ ðxi�rþ2; . . . ; xiþrÞ.
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In this section, we just give the formulae of the fifth order interpolation as an example. f þ
iþ1

2

is computed with
Eq. (2.25) on the stencil containing the five points i� 2, i� 1, i, iþ 1 and iþ 2. It takes the form:
f̂ þ
iþ1

2
¼ 1

16
ð�f þi�1 þ 9f þi þ 9f þiþ1 � f þiþ2Þ � uNðDf þ

i�3
2
;Df þ

i�1
2
;Df þ

iþ1
2
;Df þ

iþ3
2
Þ: ð2:54Þ
Similarly, f �
iþ1

2
is computed on the stencil containing the five points i� 1, i, iþ 1, iþ 2 and iþ 3. It takes the

form:
f̂ �iþ1
2
¼ 1

16
ð�f �i�1 þ 9f �i þ 9f �iþ1 � f �iþ2Þ þ uNðDf �iþ5

2
;Df �iþ3

2
;Df �iþ1

2
;Df �i�1

2
Þ: ð2:55Þ
Adding together f þ
iþ1

2

and f �
iþ1

2
gives the cell-centered value fiþ1

2

f̂ iþ1
2
¼ 1

16
ð�fi�1 þ 9f i þ 9f iþ1 � fiþ2Þ � uN ðDf �iþ5

2
;Df �iþ3

2
;Df �iþ1

2
;Df �i�1

2
Þ þ uNðDf þ

i�3
2
;Df þ

i�1
2
;Df þ

iþ1
2
;Df þ

iþ3
2
Þ:

ð2:56Þ
2.6. Time discretization

After the spatial derivative is discretized, we obtain a set of ordinary differential equations
du
dt
¼ LðuÞ; ð2:57Þ
where the operator LðuÞ ¼ �fx and fx at the grid points is approximated by the compact scheme (2.3) com-
bined with the compact interpolation or weighted interpolation. This set of ordinary differential equations
can be discretized by the third order TVD Runge–Kutta method [38] as follows:
uð1Þ ¼ un þ DtLðunÞ; ð2:58Þ

uð2Þ ¼ 3

4
un þ 1

4
uð1Þ þ 1

4
DtLðuð1ÞÞ; ð2:59Þ

unþ1 ¼ 1

3
un þ 2

3
uð2Þ þ 2

3
DtLðuð2ÞÞ: ð2:60Þ
3. Fourier analysis of the errors

In this section, we discuss the dispersion and dissipation of the compact schemes in this paper using Fourier
analysis. A periodic grid function can be represented by its trigonometric interpolation
fN ðxÞ ¼
XN=2�1

k¼�N=2

f̂ k exp
2pikx

L

� �
ð3:1Þ
where i ¼
ffiffiffiffiffiffiffi
�1
p

. Differentiating the function yields
f 0N ðsÞ ¼
XN=2�1

k¼�N=2

ixf̂ k expðixsÞ ð3:2Þ
where x ¼ 2pkDx=L ¼ 2pk=N and s ¼ x=Dx are the scaled wave number and the scaled coordinate respec-
tively. The exact first derivative of the function (3.1) (with respect to s) has the Fourier coefficients
f̂ 0k ¼ ixf̂ k. By comparing the first derivative obtained from the finite difference scheme and the exact Fourier
coefficients, the modified wave number of a finite difference scheme can be obtained. From this process, the
modified wave number for the cell-centered compact scheme of Eq. (2.3) is [26]:
w0ðxÞ ¼
2a sinðx=2Þ þ 2b

3
sinð3x=2Þ þ 2c

5
sinð5x=2Þ

1þ 2a cosðxÞ þ 2b cosð2xÞ ð3:3Þ
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and the transfer function for the compact interpolation (2.6) is given by [26]:
Fig. 3.
interpo
orders
T ðxÞ ¼ a cosðx=2Þ þ b cosð3x=2Þ þ c cosð5x=2Þ
1þ 2a cosðxÞ þ 2b cosð2xÞ : ð3:4Þ
Fig. 3.1 shows the modified wave number of the cell-centered compact scheme. We can observe that the cell-
centered compact scheme has really spectral-like resolution. Fig. 3.2 is the modified wave number of the cell-
centered compact scheme coupled with the compact interpolation. It is obvious that as the order of the
compact interpolation increases, the modified wave number approaches that of the cell-centered compact
scheme.

The modified wave number of the cell-centered compact scheme coupled with the weighted interpolation
(using linear weights) is as follows.

For the fourth order weighted compact scheme:
Realðw0ðxÞÞ ¼ 1

128ð1þ 2a cosðxÞ þ 2b cosð2xÞÞ ðað175 sinðxÞ � 28 sinð2xÞ þ 3 sinð3xÞÞ

þ b
3
ð147 sinðxÞ þ 150 sinð2xÞ � 25 sinð3xÞ þ 3 sinð4xÞÞ þ c

5
ð�25 sinðxÞ þ 150 sinð2xÞ

þ 150 sinð3xÞ � 25 sinð4xÞ þ 3 sinð5xÞÞÞ; ð3:5Þ
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Fig. 3.1. Modified wavenumber of the cell-centered compact scheme (CCS).
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2. Modified wavenumber of the cell-centered compact scheme. (left) Fourth order cell-centered compact scheme with a compact
lation of different orders of accuracy. (right) Sixth order cell-centered compact scheme with a compact interpolation of different
of accuracy.
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Imðw0ðxÞÞ¼� 1

128ð1þ2acosðxÞþ2bcosð2xÞÞðað30�45cosðxÞþ18cosð2xÞ�3cosð3xÞÞ

þb
3
ð�15þ33cosðxÞ�30cosð2xÞþ15cosð3xÞ�3cosð4xÞÞþ c

5
ð3�15cosðxÞþ30cosð2xÞ

�30cosð3xÞþ15cosð4xÞ�3cosð5xÞÞÞ: ð3:6Þ
For the sixth order weighted compact scheme:
Realðw0ðxÞÞ ¼ 1

1024ð1þ 2a cosðxÞ þ 2b cosð2xÞÞ ðað1470 sinðxÞ � 294 sinð2xÞ þ 54 sinð3xÞ � 5 sinð4xÞÞ

þ b
3
ð1176 sinðxÞ þ 1225 sinð2xÞ � 245 sinð3xÞ þ 49 sinð4xÞ � 5 sinð5xÞÞ þ c

5
ð�240 sinðxÞ

þ 1225 sinð2xÞ þ 1225 sinð3xÞ � 245 sinð4xÞ þ 49 sinð5xÞ � 5 sinð6xÞÞÞ; ð3:7Þ

Imðw0ðxÞÞ ¼ � 1

1024ð1þ 2a cosðxÞ þ 2b cosð2xÞÞ ðað175� 280 cosðxÞ þ 140 cosð2xÞ

� 40 cosð3xÞ þ 5 cosð4xÞÞ þ b
3
ð�105þ 210 cosðxÞ � 180 cosð2xÞ þ 105 cosð3xÞ

� 35 cosð4xÞ þ 5 cosð5xÞÞ þ c
5
ð35� 110 cosðxÞ þ 175 cosð2xÞ � 175 cosð3xÞ

þ 105 cosð4xÞ � 35 cosð5xÞ þ 5 cosð6xÞÞÞ: ð3:8Þ
For the eighth order weighted compact scheme:
Realðw0ðxÞÞ ¼ 1

32768ð1þ 2a cosðxÞ þ 2b cosð2xÞÞ ðað48510 sinðxÞ � 11088 sinð2xÞ þ 2673 sinð3xÞ

� 440 sinð4xÞ þ 35 sinð5xÞÞ þ b
3
ð37422 sinðxÞ þ 40095 sinð2xÞ � 8855 sinð3xÞ

þ 2268 sinð4xÞ � 405 sinð5xÞ þ 35 sinð6xÞÞ þ c
5
ð�8415 sinðxÞ þ 39655 sinð2xÞ

þ 39690 sinð3xÞ � 8820 sinð4xÞ þ 2268 sinð5xÞ � 405sinð6xÞ þ 35 sinð7xÞÞÞ; ð3:9Þ

Imðw0ðxÞÞ ¼ � 1

32768ð1þ 2a cosðxÞ þ 2b cosð2xÞÞ ðað4410� 7350 cosðxÞ þ 4200 cosð2xÞ � 1575 cosð3xÞ

þ 350 cosð4xÞ � 35 cosð5xÞÞ þ b
3
ð�2940þ 5670 cosðxÞ � 4725 cosð2xÞ þ 2975 cosð3xÞ

� 1260 cosð4xÞ þ 315 cosð5xÞ � 35 cosð6xÞÞ þ c
5
ð1260� 3255 cosðxÞ þ 4445 cosð2xÞ

� 4410 cosð3xÞ þ 2940 cosð4xÞ � 1260 cosð5xÞ þ 315 cosð6xÞ � 35 cosð7xÞÞÞ: ð3:10Þ
On the other hand, the fifth order WENO scheme [19] (using linear weights) has the modified wave number
Realðw0ðxÞÞ ¼ 3

2
sinðxÞ � 3

10
sinð2xÞ þ 1

30
sinð3xÞ; ð3:11Þ

Imðw0ðxÞÞ ¼ � 1

3
þ 1

2
cosðxÞ � 1

5
cosð2xÞ þ 1

30
cosð3xÞ: ð3:12Þ
The seventh order WENO scheme [2] has the modified wave number
Realðw0ðxÞÞ ¼ 1

420
ð672 sinðxÞ � 168 sinð2xÞ þ 32 sinð3xÞ � 3 sinð4xÞÞ; ð3:13Þ

Imðw0ðxÞÞ ¼ 1

420
ð105� 168 cosðxÞ þ 84 cosð2xÞ � 24 cosð3xÞ þ 3 cosð4xÞÞ: ð3:14Þ
The ninth order WENO scheme [2] has the modified wave number
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Realðw0ðxÞÞ ¼ 1

2520
ð4200 sinðxÞ � 1200 sinð2xÞ þ 300 sinð3xÞ � 50 sinð4xÞ þ 4 sinð5xÞÞ; ð3:15Þ

Imðw0ðxÞÞ ¼ 1

2520
ð504� 840 cosðxÞ þ 480 cosð2xÞ � 180 cosð3xÞ þ 40 cosð4xÞ � 4 cosð5xÞÞ: ð3:16Þ
The real part corresponds to the dispersion term of the scheme’s resolution to short waves and is shown in Fig.
3.3. The imaginary part corresponds to the dissipation and is shown in Fig. 3.4. We can see that the fourth
order weighted compact scheme has almost the same resolution as that of the fifth order WENO scheme.
The sixth and eighth order weighted compact schemes have better resolution to short waves than the counter-
parts of WENO schemes. The compact schemes have lower dissipation than the counterparts of WENO
schemes.

4. Accuracy tests

In this section, we test the accuracy of the weighted compact schemes. In the following examples, we have
adjusted the time step to Dt ¼ Dx

r
3 for the rth order schemes so that time discretization error will not dominate.
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Fig. 3.3. Modified wave number of weighted compact schemes and a comparison with WENO schemes.
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4.1. The accuracy of weighted compact schemes with e ¼ 10�6

The parameter e in (2.13) is a small positive number to avoid the denominator becoming zero. In most
applications of WENO schemes, e.g. those in [45,46], it is taken as e ¼ 10�6. We will test the accuracy with
this choice of e in this subsection.

We solve the following linear scalar equation:
Table
L1 and
weight

Metho

WCOM

WCOM

WCOM

N is th
ut þ ux ¼ 0; �1 6 x 6 1; ð4:1Þ
uðx; 0Þ ¼ u0ðxÞ; periodic
with three different initial conditions: u0ðxÞ ¼ sinðpxÞ, u0ðxÞ ¼ sin px� sinðpxÞ
p

� �
and u0ðxÞ ¼ sin4ðpxÞ.

In Tables 4.1, the L1 and L1 errors and numerical orders of accuracy are given for the weighted compact
schemes of different order for the first initial condition at t ¼ 1. This is an easy test case and the designed order
of accuracy is achieved in all cases.

For the second initial condition, used in [16], there are two critical points where f 0 ¼ 0 but f 000 6¼ 0. Table
4.2 contains the errors and numerical orders of accuracy at t ¼ 2. We can observe, in the L1 norm, all the
weighted compact schemes can achieve the designed order of accuracy. However, in the L1 norm, the order
of accuracy achieved seems to be lower than the designed order. We will discuss this issue further in the next
subsection.

The third case is a more demanding test case because it has a higher order critical point with
f 0 ¼ f 00 ¼ f 000 ¼ 0 at x ¼ 0. Table 4.3 contains the numerical results at t ¼ 10. We observe that all the schemes
reach the designed accuracy much later during the mesh refinement than that for the previous two initial
conditions.

4.2. The influence of e and the mapped function for the smoothness indicator

The parameter e in (2.13) has some effect on the accuracy of WENO schemes for smooth solutions [16]. In
order to test the role of this parameter on the rate of convergence of the weighted compact schemes, we sim-

ulate the linear equation (4.1) with the initial condition u0ðxÞ ¼ sin px� sinðpxÞ
p

� �
, which is the one most sensi-

tive to the choice of e for regular WENO schemes [16]. In Table 4.4, we list the errors and numerical orders of

accuracy for the fifth order weighted compact scheme using e ¼ 10�6 and e ¼ 10�20. It can be observed that
4.1
L1 errors and numerical orders of accuracy on ut þ ux ¼ 0 with u0ðxÞ ¼ sinðpxÞ for the fourth order, sixth order and eighth order

ed compact schemes

d N L1 error L1 order L1 error L1 order

P4 10 1.68E�2 2.73E�2
20 8.16E�4 4.36 1.46E�3 4.22
40 3.35E�5 4.61 5.83E�5 4.65
80 1.56E�6 4.43 2.66E�6 4.45

160 8.10E�8 4.28 1.34E�7 4.31

P6 10 2.45E�3 5.38E�3
20 3.31E�5 6.21 1.01E�4 5.74
40 4.60E�7 6.18 2.44E�6 5.37
80 6.93E�9 6.05 6.60E�8 5.21

160 9.30E�11 6.22 1.61E�9 5.36

P8 10 2.52E�4 4.51E�4
20 3.23E�7 9.61 7.41E�7 9.25
40 5.46E�10 9.21 1.48E�9 8.97
80 1.16E�12 8.88 3.19E�12 8.86

160 2.96E�15 8.61 6.79E�15 8.88

e total number of grid points in a uniform mesh. t ¼ 1.



Table 4.2
L1 and L1 errors and numerical orders of accuracy on ut þ ux ¼ 0 with u0ðxÞ ¼ sinðpx� sinðpxÞ=pÞ for the fourth order, sixth order and
eight order weighted compact schemes

Method N L1 error L1 order L1 error L1 order

WCOMP4 10 5.80E�2 1.29E�1
20 4.99E�3 3.54 1.09E�2 3.57
40 3.40E�4 3.88 9.68E�4 3.49
80 1.73E�5 4.30 7.95E�5 3.61

160 8.81E�7 4.29 7.16E�6 3.47

WCOMP6 10 2.43E�2 5.98E�2
20 6.16E�4 5.31 1.86E�3 5.01
40 6.53E�6 6.56 3.05E�5 5.93
80 5.47E�8 6.90 4.79E�7 5.99

160 5.10E�10 6.74 8.16E�9 5.88

WCOMP8 10 1.24E�2 3.11E�2
20 6.48E�5 7.58 1.55E�4 7.65
40 2.23E�7 8.18 8.46E�7 7.52
80 8.17E�10 8.09 6.33E�9 7.06

160 2.66E�12 8.26 3.92E�11 7.34

N is the total number of grid points in a uniform mesh. t ¼ 2.

Table 4.3
L1 and L1 errors and numerical orders of accuracy on ut þ ux ¼ 0 with u0ðxÞ ¼ sin4ðpxÞ for the fourth order, sixth order and eighth order
weighted compact schemes

Method N L1 error L1 order L1 error L1 order

WCOMP4 10 3.56E�1 4.46E�1
20 1.42E�1 1.33 3.12E�1 0.52
40 2.62E�2 2.44 6.18E�2 2.33
80 2.21E�3 3.57 4.20E�3 3.88

160 1.64E�4 3.76 6.20E�4 2.76

WCOMP6 10 3.56E�1 4.68E�1
20 9.27E�2 1.94 2.07E�1 1.18
40 7.22E�3 3.68 1.40E�2 3.88
80 3.06E�4 4.56 1.17E�3 3.59

160 1.10E�6 8.12 5.15E�6 7.82

WCOMP8 10 2.78E�1 4.04E�1
20 5.56E�2 2.32 1.07E�1 1.91
40 5.16E�4 6.75 1.67E�3 6.00
80 1.87E�6 8.10 7.46E�6 7.81

160 3.05E�9 9.26 2.07E�8 8.49

N is the total number of grid points in a uniform mesh. t ¼ 10.
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there is essentially no difference between the results with these two different values of e. Similar conclusions
hold for the weighted compact schemes of other orders of accuracy. It seems that the convergence rate of
the weighted compact schemes is less sensitive to the choice of e than the regular WENO schemes [16].

For the regular fifth order WENO scheme, Henrich et al. [16] pointed out that the nonlinear weights with
the smoothness indicator in [19] may lose accuracy at certain smooth extrema. To solve this problem, they
introduced a mapping function:
gr
kðxÞ ¼

xðCr
k þ ðCr

kÞ
2 � 3Cr

kxþ x2Þ
ðCr

kÞ
2 þ ð1� 2Cr

kÞx
; ð4:2Þ
where x 2 ½0; 1� and r ¼ 0; 1; 2. This function is monotonically increasing with a finite slope and gr
kð0Þ ¼ 0,

gr
kð1Þ ¼ 1, gr

kðCr
kÞ ¼ Cr

k, ðgr
kðCr

kÞÞ
0 ¼ 0 and ðgr

kðCr
kÞÞ
00 ¼ 0. The mapped nonlinear weights are given by



Table 4.4
The comparison between the results of different e for L1 and L1 errors and numerical orders of accuracy on ut þ ux ¼ 0 with
u0ðxÞ ¼ sinðpx� sinðpxÞ=pÞ
e N L1 error L1 order L1 error L1 order

10�6 10 5.92E�2 1.30E�1
20 4.43E�3 3.74 1.17E�2 3.48
40 2.85E�4 3.96 9.65E�4 3.60
80 1.51E�5 4.23 9.52E�5 3.34

160 7.46E�7 4.34 9.11E�6 3.38

10�20 10 5.92E�2 1.30E�1
20 4.43E�3 3.74 1.17E�2 3.48
40 2.85E�4 3.96 9.65E�4 3.60
80 1.52E�5 4.23 9.56E�5 3.34

160 7.72E�7 4.30 9.59E�6 3.32

Fifth order weighted compact scheme. N is the total number of grid points in a uniform mesh. t ¼ 2.

Table
L1 and
scheme

Metho

MWC

MWC

MWC

MWC

N is th
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xrM
k ¼ gr

kðxr
kÞ: ð4:3Þ
The WENO schemes based on these mapped nonlinear weights are able to achieve the designed high order
accuracy for general smooth solutions independent of the choice of e [16]. We test these mapped nonlinear
weights, with e ¼ 10�20, for our weighted compact schemes. The results are listed in Table 4.5. Compared with
the results in Table 4.2, we observe an apparent improvement for the order of accuracy in the L1 norm, and
also the magnitude of the errors for the same mesh has been significantly reduced for most cases. Similar con-
clusions hold for higher order weighted compact schemes.
4.5
L1 errors and numerical orders of accuracy on ut þ ux ¼ 0 with u0ðxÞ ¼ sinðpx� sinðpxÞ=pÞ for the mapped weighted compact
with e ¼ 10�20

d N L1 error L1 order L1 error L1 order

OMP4 10 3.89E�2 9.14E�2
20 2.56E�3 3.93 6.56E�3 3.80
40 1.33E�4 4.27 3.64E�4 4.17
80 6.95E�6 4.26 1.87E�5 4.28

160 3.91E�7 4.15 1.04E�6 4.17

OMP5 10 3.42E�2 7.59E�2
20 1.48E�3 4.53 3.99E�3 4.25
40 5.35E�5 4.79 1.63E�4 4.62
80 1.73E�6 4.95 4.88E�6 5.06

160 5.47E�8 4.99 1.54E�7 4.99

OMP6 10 1.53E�2 3.64E�2
20 2.22E�4 6.10 6.68E�4 5.77
40 1.98E�6 6.80 6.36E�6 6.71
80 1.72E�8 6.85 5.81E�8 6.77

160 1.62E�10 6.73 5.61E�10 6.69

OMP8 10 7.25E�3 1.64E�2
20 4.19E�5 7.43 1.24E�4 7.04
40 9.89E�8 8.73 3.25E�7 8.58
80 2.06E�10 8.91 6.84E�10 8.89

160 2.02E�11 3.35 4.21E�11 4.02

e total number of grid points in a uniform mesh. t ¼ 2.
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5. Numerical tests and comparison

5.1. Scalar cases

The first example is the following nonlinear scalar Burgers’ equation
Fig. 5.
ut þ
u2

2

� �
x

¼ 0 ð5:1Þ
with the initial condition uðx; 0Þ ¼ 0:5þ sinðpxÞ. In Fig. 5.1, we show the solution at t ¼ 1:5=p with a shock
near x ¼ 1:2. We can observe that all the weighted compact schemes give similarly good results for this scalar
problem. They perform very well to capture this discontinuity.

Our second scalar example is the Buckley–Leverett problem that is governed by the equation
ut þ
4u2

4u2 þ ð1� uÞ2

 !
x

¼ 0: ð5:2Þ
The initial condition is u ¼ 1 for � 1
2
6 x 6 0 and u ¼ 0 elsewhere. The solution is computed up to t ¼ 0:4. Fig.

5.2 shows the numerical solutions of the fourth, sixth and eighth order weighted compact schemes. Again, all
these schemes perform similarly well for this example.
X

u

0.0 0.5 1.0 1.5 2.0
-0.5

0.0

0.5

1.0

1.5

WCOMP4
WCOMP6
WCOMP8
Exact

1. Solution of the nonlinear Burgers’ equation with the initial condition uðx; 0Þ ¼ 0:5þ sinðpxÞ at t ¼ 1:5=p with 100 grid points.
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Fig. 5.2. Solution of the Buckley–Leverett problem. t ¼ 0:4. N ¼ 200 grid points.
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5.2. 1D Euler equation

The 1D Euler equation is given by
Fig. 5.
with 8
Ut þ F ðUÞx ¼ 0; ð5:3Þ

where U ¼ ðq; qu; eÞT, F ðUÞ ¼ ðqu; qu2 þ p; uðeþ pÞÞT. Here q is the density, u is the velocity, e is the total en-
ergy, p is the pressure which is related to the total energy by e ¼ p

c�1
þ 1

2
qu2, the ratio of specific heat c ¼ 1:4.

We consider three typical examples. The first problem is the Shu–Osher problem [39]. It describes the inter-
action of a Mach 3 shock with a density wave. A Mach 3 shock is initially located at x ¼ �4 and moves to the
right. A sine wave is superposed to the density in the right region to the shock which is given by
ðq; v; P Þ ¼ ð1þ e sinð5xÞ; 0; 1Þ. The amplitude of the sine wave is e ¼ 0:2. The value downstream of the shock
wave is computed by the Rankine–Hugoniot relation [34].

The second is the Sod problem [41]. The initial condition is:
ðqL; qL; pLÞ ¼ ð1; 0; 1Þ when x < 0;

ðqR; qR; pRÞ ¼ ð0:125; 0; 0:1Þ when x > 0:
The third is the Lax problem [24] with the initial condition:
ðqL; qL; pLÞ ¼ ð0:445; 0:698; 3:528Þ when x < 0;

ðqR; qR; pRÞ ¼ ð0:5; 0; 0:571Þ when x > 0:
Figs. 5.3–5.5 show the density distributions of the numerical solutions corresponding to the three problems
described above. We observe a good non-oscillatory resolution of the discontinuities by all the compact
schemes, which is comparable to the resolution of discontinuities by regular WENO schemes [19]. The reso-
lution to the smooth solution structure in Fig. 5.3 is very good, especially for the higher order weighted com-
pact schemes.

5.3. 2D Euler equation

The 2D Euler equation is given by
Ut þ F ðUÞx þ GðUÞy ¼ 0; ð5:4Þ
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3. Density distribution for the Shu–Osher problem with 400 grid points at t ¼ 1:8. The ‘‘exact solution” is obtained by WENO5
000 grid points.
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Fig. 5.4. Density distribution for the Sod problem with 100 grid points at t ¼ 2.
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Fig. 5.5. Density distribution for the Lax problem with 100 grid points at t ¼ 1:3.
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where U ¼ ðq;qu; qv; eÞT, F ðUÞ ¼ ðqu; qu2 þ p; quv; uðeþ pÞÞT, GðUÞ ¼ ðqv; quv; qv2 þ p; vðeþ pÞÞT. Here q is
the density, u is the velocity component in the x direction, v is the velocity component in the y direction, e is
the total energy, p is the pressure which is related to the total energy by e ¼ p

c�1
þ 1

2
qu2, the ratio of specific heat

c ¼ 1:4.
For the two dimensional Euler equation, we solve three problems. The first example is the double Mach

reflection problem. This example is well studied using high order WENO schemes in, e.g. [19,47]. It contains
strong shock waves and contact discontinuity which is a good example to test the numerical scheme to show
the ability to capture strong shock wave and the resolution for small scale structure. The computational
domain for this problem is ½0; 4� � ½0; 1�. The reflecting wall lies at the bottom, starting from x ¼ 1

6
. Initially,

a right moving Mach 10 shock wave is positioned at x ¼ 1
6
, y ¼ 0. It has an angle 60� with the x axis. The

boundary condition is the same as that in [19]. The grid is uniform with 1
Dx ¼ 1

Dy ¼ 1
480

. Fig. 5.6 shows the density
contours obtained by the fifth order WENO scheme and the weighted compact schemes. The contours zoomed
around the contact discontinuity and Mach stem region are given in Fig. 5.7. We can clearly see that the
weighted compact scheme has almost the same ability to capture strong shock waves as the regular WENO
scheme [19] while the resolution of the small scale waves is improved.

The second example is the Rayleigh–Taylor instability. It happens on an interface between fluids with dif-
ferent densities when an acceleration is directed from the heavy fluid to the light one. The instability has a
fingering nature, with bubbles of light fluid rising into the ambient heavy fluid and spikes of heavy falling into
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the light fluid. This problem has been extensively studied using high order shock capturing schemes in the lit-
erature, see, e.g. [47]. Previous studies show that there are many small scale structures. It is a good example to
test the resolution of the numerical schemes. Following the simulation of Zhang et al. [47], the computational
domain is ½0; 1

4
� � ½0; 1�; the initial interface is at y ¼ 1

2
. The heavy fluid with q ¼ 2 is below in the interface and

the light fluid with density q ¼ 1 is above the interface. The pressure is continuous across the interface. A small
perturbation is given to the velocity component in y direction. Thus, for 0 6 y < 1

2
, q ¼ 2, u ¼ 0, p ¼ 2y þ 1,

v ¼ �0:025c cosð8pxÞ; and for 1
2
6 y 6 1, q ¼ 1, u ¼ 0, p ¼ y þ 3

2
, v ¼ �0:025c cosð8pxÞ. Here, c ¼

ffiffiffiffiffiffiffiffiffiffi
cp=q

p
is

the sound speed. The ratio of specific heats c ¼ 5
3
. A source term q is added to the right hand side of the third

equation and qv is added to the fourth equation of the Euler system (5.4). The simulation time is t ¼ 1:95. Fig.
5.8 shows the density contours of the numerical results obtained by the fourth order, sixth order and eighth
order weighted compact schemes. For comparison, we also show the numerical result obtained by the fifth
order WENO scheme [19]. We can observe that the weighted compact schemes can produce more small vor-
tices in the shear layer, indicating that they have better resolution to capture small scale structures.
Fig. 216. Double Mach reflection, 30 equally spacedcontours for the density from 1.731 to 2172. with the gridDx … Dy…at
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Although the convergence to the steady state solution of the weighted compact scheme is satisfactory for
smooth problems, it is not satisfactory for problems containing strong shocks. This seems to be caused by the
slight post shock oscillation, similar to that for the regular WENO scheme [44]. To remove the slight post
shock oscillation, Zhang and Shu [44] designed a new smoothness indicator for the fifth order WENO scheme.
It has the following form:
.200.2

of Computational Physics 227 (20
IS0 ¼ ðfi�2 � 4f i�1 þ 3f iÞ
2
; ð6:5Þ

IS1 ¼ ðfi�1 � fiþ1Þ2; ð6:6Þ
IS2 ¼ ð3f i � 4f iþ1 þ fiþ2Þ2: ð6:7Þ
Using this new smoothness indicator, the post shock oscillation is removed or reduced significantly for the
fifth order WENO scheme [44]. In this section, we use two examples to test the influence of two kinds of
smoothness indicators to the convergence to the steady state solution of the Euler equation for the fourth or-
der weighted compact scheme. As in [44], we denote the smoothness indicator (6.5)–(6.7) as ZS SI and the
original smoothness indicator (2.20)–(2.22) as JS SI in this section.

Our first example is a one dimensional steady shock wave of Mach number 2. The computational domain is
½�1; 1�. The shock is located at x ¼ 0. The initial data is computed from the Rankine–Hugoniot relation [34].
We refer to [44] for more details.

Fig. 6.11 shows the density distribution obtained by the fourth order weighted compact scheme and a com-
parison between two different smoothness indicators. The numerical performance is very similar to that for the
regular WENO scheme studied in [44]. Even though both schemes give indistinguishable results when the
numerical solution is plotted globally, the weighted compact scheme with the ZS smoothness indicator
removes the slight oscillation after the shock wave which is discernible in a zoomed figure. As a result, the
convergence to steady state is improved significantly, see Fig. 6.12. The residue settles down close to machine
zero.

As a 2D test problem, we use a 45� oblique shock wave. We designed this problem in [44] to avoid the dif-
ficulty of boundary conditions when shock waves pass through the boundary. The computational domain is
chosen to be ½0; 4� � ½0; 2�. The initial shock wave passes the point ðx; yÞ ¼ ð3; 0Þ. The computational domain is
divided into 200� 100 equally spaced points with Dx ¼ Dy. Hence, when the shock passes the upper and lower
boundaries, explicit periodic boundary condition along the shock direction can be implemented and compli-
cated boundary conditions can be avoided.
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Fig. 6.13. Density contours of an 45� oblique shock with M1 ¼ 2 with the fourth order weighted compact scheme. (left) With the ZS
smoothness indicator; (right) with the JS smoothness indicator.
perturbation may shift the shock. Fig. 6.14 shows the evolution of the averaged residue. The convergence abil-
ity of the ZS smoothness indicator is much better.

7. Concluding remarks

We have modified and extended the weighted compact schemes proposed by Deng and Zhang [9] to design
a class of weighted compact schemes with increasingly higher order of accuracy. The weighted compact
scheme in [9] was proposed based on the idea of the WENO scheme [19] and the cell-centered compact scheme
[26], which has better short wave resolution than other compact schemes. The cell centered values can be
obtained exactly in a staggered grid or interpolated in a regular grid. The weighted compact scheme is a result
of the cell-centered compact scheme coupled with a nonlinear weighted interpolation for the cell centered val-
ues of the flux.

Instead of interpolating the conservative variables as in [9], we obtain the cell centered flux directly with
high order (up to eighth order) accuracy from a WENO interpolation. Through using the Lax–Friedrichs flux
splitting and characteristic-wise projection, the resulted weighted interpolation formulae have the same struc-
ture as those of a regular WENO scheme. Therefore, the analysis and even many pieces of the code can be
copied from that of the regular WENO schemes. Through a systematic analysis, tests and comparison, we con-
clude that the weighted compact schemes discussed in this paper have the same ability to capture strong dis-
continuities as the regular WENO schemes, while the resolution of short frequency waves in the solution is
improved.

The convergence to steady state solutions of Euler equations is studied for the fourth order weighted com-
pact scheme. Even though the interpolation is different from the reconstruction for the regular WENO
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scheme, the weighted compact scheme and the regular WENO scheme have the same smoothness indicator. In
addition, we test two different kinds of smoothness indicators. One is the original smooth indicator proposed
by Jiang and Shu [19], the other is the smooth indicator proposed by Zhang and Shu [44]. It is found that the
ZS smoothness indicator is more suitable to simulate steady state solutions of the Euler equations including
strong shock waves, similar to the situation for regular WENO schemes [44]. The slight post-shock oscillation
is removed or reduced and convergence toward steady state is improved significantly.
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